skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pop, Mihai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zhu, Shanfeng (Ed.)
    We present TIPP3 and TIPP3-fast, new tools for abundance profiling in metagenomic datasets. Like its predecessor, TIPP2, the TIPP3 pipeline uses a maximum likelihood approach to place reads into labeled taxonomies using marker genes, but it achieves superior accuracy to TIPP2 by enabling the use of much larger taxonomies through improved algorithmic techniques. We show that TIPP3 is generally more accurate than leading methods for abundance profiling in two important contexts: when reads come from genomes not already in a public database (i.e., novel genomes) and when reads contain sequencing errors. We also show that TIPP3-fast has slightly lower accuracy than TIPP3, but is also generally more accurate than other leading methods and uses a small fraction of TIPP3’s runtime. Additionally, we highlight the potential benefits of restricting abundance profiling methods to those reads that map to marker genes (i.e., using a filtered marker-gene based analysis), which we show typically improves accuracy. TIPP3 is freely available athttps://github.com/c5shen/TIPP3. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026
  2. Metagenomics has revolutionized our understanding of microbial communities, offering unprecedented insights into their genetic and functional diversity across Earth’s diverse ecosystems. Beyond their roles as environmental constituents, microbiomes act as symbionts, profoundly influencing the health and function of their host organisms. Given the inherent complexity of these communities and the diverse environments where they reside, the components of a metagenomics study must be carefully tailored to yield accurate results that are representative of the populations of interest. This Primer examines the methodological advancements and current practices that have shaped the field, from initial stages of sample collection and DNA extraction to the advanced bioinformatics tools employed for data analysis, with a particular focus on the profound impact of next-generation sequencing on the scale and accuracy of metagenomics studies. We critically assess the challenges and limitations inherent in metagenomics experimentation, available technologies and computational analysis methods. Beyond technical methodologies, we explore the application of metagenomics across various domains, including human health, agriculture and environmental monitoring. Looking ahead, we advocate for the development of more robust computational frameworks and enhanced interdisciplinary collaborations. This Primer serves as a comprehensive guide for advancing the precision and applicability of metagenomic studies, positioning them to address the complexities of microbial ecology and their broader implications for human health and environmental sustainability. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Abstract The COVID-19 pandemic has emphasized the importance of accurate detection of known and emerging pathogens. However, robust characterization of pathogenic sequences remains an open challenge. To address this need we developed SeqScreen, which accurately characterizes short nucleotide sequences using taxonomic and functional labels and a customized set of curated Functions of Sequences of Concern (FunSoCs) specific to microbial pathogenesis. We show our ensemble machine learning model can label protein-coding sequences with FunSoCs with high recall and precision. SeqScreen is a step towards a novel paradigm of functionally informed synthetic DNA screening and pathogen characterization, available for download atwww.gitlab.com/treangenlab/seqscreen. 
    more » « less
  4. null (Ed.)